Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Sci Technol ; 58(19): 8299-8312, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690832

RESUMEN

Accurate estimates of fossil fuel CO2 (FFCO2) emissions are of great importance for climate prediction and mitigation regulations but remain a significant challenge for accounting methods relying on economic statistics and emission factors. In this study, we employed a regional data assimilation framework to assimilate in situ NO2 observations, allowing us to combine observation-constrained NOx emissions coemitted with FFCO2 and grid-specific CO2-to-NOx emission ratios to infer the daily FFCO2 emissions over China. The estimated national total for 2016 was 11.4 PgCO2·yr-1, with an uncertainty (1σ) of 1.5 PgCO2·yr-1 that accounted for errors associated with atmospheric transport, inversion framework parameters, and CO2-to-NOx emission ratios. Our findings indicated that widely used "bottom-up" emission inventories generally ignore numerous activity level statistics of FFCO2 related to energy industries and power plants in western China, whereas the inventories are significantly overestimated in developed regions and key urban areas owing to exaggerated emission factors and inexact spatial disaggregation. The optimized FFCO2 estimate exhibited more distinct seasonality with a significant increase in emissions in winter. These findings advance our understanding of the spatiotemporal regime of FFCO2 emissions in China.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Carbono , Combustibles Fósiles , China , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
3.
Sci Total Environ ; 926: 171400, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38461974

RESUMEN

The maximum Rubisco carboxylation rate normalized to 25 °C (Vcmax25) is a key parameter in terrestrial biosphere models for simulating carbon cycling. Recently, global distributions of Vcmax25 have been derived through various methods and different data, including field measurements, ecological optimality theory (EOT), leaf chlorophyll content (LCC), and solar-induced chlorophyll fluorescence (SIF). However, direct validation poses challenges due to high uncertainty arising from limited ground-based observations. This study conducted an indirect evaluation of four Vcmax25 datasets by assessing the accuracy of gross primary productivity (GPP) simulated using the Biosphere-atmosphere Exchange Process Simulator (BEPS) at both site and global scales. Results indicate that, compared to utilizing Vcmax25 fixed by plant functional types (PFT) derived from field measurements, incorporating Vcmax25 derived from SIF and LCC (SIF + LCC), or solely LCC, into BEPS significantly reduces simulated errors in the annual total GPP, with a 23.2 %-25.1 % decrease in the average absolute bias across 196 FLUXNET2015 sites. Daily GPP for evergreen needleleaf forests, deciduous broadleaf forests, shrublands, grasslands, and croplands shows a 7.8 %-27.6 % decrease in absolute bias, primarily attributed to reduced simulation errors during off-peak seasons of vegetation growth. Conversely, the annual total GPP error simulated using EOT-derived Vcmax25 increases slightly (2.2 %) compared to that simulated using PFT-fixed Vcmax25. This is primarily due to a significant overestimation in evergreen broadleaf forests and underestimation in croplands, despite slight increased accuracy for other PFTs. The global annual GPP simulated using Vcmax25 with seasonal variations (i.e., LCC Vcmax25 and SIF + LCC Vcmax25) yields a 4.3 %-7.3 % decrease compared to that simulated using PFT-fixed Vcmax25. Compared to FLUXCOM and GOSIF GPP products, the GPP simulated based on SIF + LCC Vcmax25 and LCC Vcmax25 demonstrates better consistency (R2 = 0.91-0.93, RMSE = 314.2-376.6 g C m-2 yr-1). This study underscores the importance of accurately characterizing the spatiotemporal variations in Vcmax25 for the accurate simulation of global vegetation productivity.


Asunto(s)
Clorofila , Fotosíntesis , Fluorescencia , Bosques , Estaciones del Año , Plantas , Hojas de la Planta , Ecosistema
4.
Sci Total Environ ; 926: 171895, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38531448

RESUMEN

Drought and heat caused major disturbance in nature by interfering with plant phenology, and can also alter the vulnerability and resilience of terrestrial ecosystems. Existing research on the Mongolian Plateau has primarily focused on studying the response of the start (SOS) and end (EOS) of the growing season to drought and heat variations. However, there is still a lack of comprehensive understanding regarding the coupled effects of drought and heat on phenology across different land cover types. In this study, we retrieved SOS and EOS based on 34-year (1982-2015) normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). Results showed that grasslands and the Gobi-Desert show rapid advancement in SOS, and forests presented the slowest advancement in SOS, but SOS in croplands were delayed. EOS across four land cover types advanced, with the Gobi-Desert showed the highest rate of advancement and forests the lowest. Using the Palmer Drought Severity Index (PDSI) and soil temperature as the indicators of drought and thermal conditions, the responses of SOS and EOS to these two climate variables were evaluated. The advanced SOS driven by lower drought severity was detected in forests, grasslands, croplands and the Gobi-Desert. The dominant response of EOS to drought severity was positive in croplands, grasslands and forests, except for the Gobi-Desert, where drought severity had negative effects on EOS. Compared with the daily average soil temperature (STmean), the daily maximum soil temperature (STmax, daytime), and the daily minimum soil temperature (STmin, nighttime), the daily diurnal soil temperature range (DSTR, where DSTR = STmax - STmin) between night and day were the most suitable indicators for assessing the response of SOS and EOS to soil temperature. Strong negative correlation between SOS and the preseason DSTR was pronounced in all land cover types on the Mongolian Plateau. However, EOS was negatively correlated with the preseason DSTR only in the Gobi-Desert. Last but not least, normalized sensitivity assessments reveal that the negative impacts of DSTR on SOS and EOS were the main controlling factors on the Mongolian Plateau phenology, followed by the couple negative effects of drought severity and DSTR.


Asunto(s)
Sequías , Ecosistema , Temperatura , Suelo , Cambio Climático , Estaciones del Año
5.
Innovation (Camb) ; 4(6): 100515, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37786507

RESUMEN

Forests are chiefly responsible for the terrestrial carbon sink that greatly reduces the buildup of CO2 concentrations in the atmosphere and alleviates climate change. Current predictions of terrestrial carbon sinks in the future have so far ignored the variation of forest carbon uptake with forest age. Here, we predict the role of China's current forest age in future carbon sink capacity by generating a high-resolution (30 m) forest age map in 2019 over China's landmass using satellite and forest inventory data and deriving forest growth curves using measurements of forest biomass and age in 3,121 plots. As China's forests currently have large proportions of young and middle-age stands, we project that China's forests will maintain high growth rates for about 15 years. However, as the forests grow older, their net primary productivity will decline by 5.0% ± 1.4% in 2050, 8.4% ± 1.6% in 2060, and 16.6% ± 2.8% in 2100, indicating weakened carbon sinks in the near future. The weakening of forest carbon sinks can be potentially mitigated by optimizing forest age structure through selective logging and implementing new or improved afforestation. This finding is important not only for the global carbon cycle and climate projections but also for developing forest management strategies to enhance land sinks by alleviating the age effect.

6.
Sci Data ; 10(1): 688, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816768

RESUMEN

Cotton maps (10 m) of Xinjiang (XJ_COTTON10), which is the largest cotton production region of China, were produced from 2018 to 2021 through supervised classification. A two-step mapping strategy, i.e., cropland mapping followed by cotton extraction, was employed to improve the accuracy and efficiency of cotton mapping for a large region of about 1.66 million km2 with high heterogeneity. Additionally, the time-series satellite data related to spectral, textural, structural, and phenological features were combined and used in a supervised random forest classifier. The cotton/non-cotton classification model achieved overall accuracies of about 95% and 90% on the test samples of the same and adjacent years, respectively. The proposed two-step cotton mapping strategy proved promising and effective in producing multi-year and consistent cotton maps. XJ_COTTON10 agreed well with the statistical areas of cotton at the county level (R2 = 0.84-0.94). This is the first cotton mapping for the entire Xinjiang at 10-meter resolution, which can provide a basis for high-precision cotton monitoring and policymaking in China.

8.
Sci Adv ; 9(21): eabq4974, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37235657

RESUMEN

Photosynthesis and evapotranspiration in Amazonian forests are major contributors to the global carbon and water cycles. However, their diurnal patterns and responses to atmospheric warming and drying at regional scale remain unclear, hindering the understanding of global carbon and water cycles. Here, we used proxies of photosynthesis and evapotranspiration from the International Space Station to reveal a strong depression of dry season afternoon photosynthesis (by 6.7 ± 2.4%) and evapotranspiration (by 6.1 ± 3.1%). Photosynthesis positively responds to vapor pressure deficit (VPD) in the morning, but negatively in the afternoon. Furthermore, we projected that the regionally depressed afternoon photosynthesis will be compensated by their increases in the morning in future dry seasons. These results shed new light on the complex interplay of climate with carbon and water fluxes in Amazonian forests and provide evidence on the emerging environmental constraints of primary productivity that may improve the robustness of future projections.


Asunto(s)
Clima , Bosques , Estaciones del Año , Fotosíntesis , Carbono , Árboles , Agua
9.
New Phytol ; 235(5): 1692-1700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35297050

RESUMEN

Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2 and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax ) and leaf N content in enhanced-CO2 experiments and satellite records signify increasing N limitation of primary production. We predicted Vcmax using the coordination hypothesis and estimated changes in leaf-level photosynthetic N for 1982-2016 assuming proportionality with leaf-level Vcmax at 25°C. The whole-canopy photosynthetic N was derived using satellite-based leaf area index (LAI) data and an empirical extinction coefficient for Vcmax , and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern of Vcmax shares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr-1 , while observed leaf (total) N declined by 0.2-0.25% yr-1 . Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf-level responses to rising CO2 , and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Clorofila , Fotosíntesis/fisiología , Hojas de la Planta/fisiología
10.
Innovation (Camb) ; 2(3): 100127, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34557769
11.
Science ; 373(6562): eabg7484, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554812

RESUMEN

Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results' robustness. Here, we provide additional evidence that these arguments did not affect our finding and that the global decline in CFE is robust.


Asunto(s)
Dióxido de Carbono , Fotosíntesis , Fertilización
12.
Nat Commun ; 12(1): 4866, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381045

RESUMEN

Plants invest a considerable amount of leaf nitrogen in the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO), forming a strong coupling of nitrogen and photosynthetic capacity. Variability in the nitrogen-photosynthesis relationship indicates different nitrogen use strategies of plants (i.e., the fraction nitrogen allocated to RuBisCO; fLNR), however, the reason for this remains unclear as widely different nitrogen use strategies are adopted in photosynthesis models. Here, we use a comprehensive database of in situ observations, a remote sensing product of leaf chlorophyll and ancillary climate and soil data, to examine the global distribution in fLNR using a random forest model. We find global fLNR is 18.2 ± 6.2%, with its variation largely driven by negative dependence on leaf mass per area and positive dependence on leaf phosphorus. Some climate and soil factors (i.e., light, atmospheric dryness, soil pH, and sand) have considerable positive influences on fLNR regionally. This study provides insight into the nitrogen-photosynthesis relationship of plants globally and an improved understanding of the global distribution of photosynthetic potential.


Asunto(s)
Nitrógeno/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Clorofila/metabolismo , Clima , Ecosistema , Internacionalidad , Modelos Teóricos , Fósforo/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Suelo/química
13.
Carbon Balance Manag ; 16(1): 21, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34264423

RESUMEN

BACKGROUND: Forests in the Far North of Ontario (FNO), Canada, are likely the least studied in North America, and quantifying their current and future carbon (C) stocks is the first step in assessing their potential role in climate change mitigation. Although the FNO forests are unmanaged, the latter task is made more important by growing interest in developing the region's natural resources, primarily for timber harvesting. In this study, we used a combination of field and remotely sensed observations with a land surface model to estimate forest C stocks in the FNO forests and to project their future dynamics. The specific objective was to simulate historical C stocks for 1901-2014 and future C stocks for 2015-2100 for five shared socioeconomic pathway (SSP) scenarios selected as high priority scenarios for the 6th Assessment Report on Climate Change. RESULTS: Carbon stocks in live vegetation in the FNO forests remained relatively stable between 1901 and 2014 while soil organic carbon (SOC) stocks steadily declined, losing about 16% of their initial value. At the end of the historical simulation (in 2014), the stocks were estimated at 19.8, 46.4, and 66.2 tCha-1 in live vegetation, SOC, and total ecosystem pools, respectively. Projections for 2015-2100 indicated effectively no substantial change in SOC stocks, while live vegetation C stocks increased, accelerating their growth in the second half of the twenty-first century. These results were consistent among all simulated SSP scenarios. Consequently, increase in total forest ecosystem C stocks by 2100 ranged from 16.7 to 20.7% of their value in 2015. Simulations with and without wildfires showed the strong effect of fire on forest C stock dynamics during 2015-2100: inclusion of wildfires reduced the live vegetation increase by half while increasing the SOC pool due to higher turnover of vegetation C to SOC. CONCLUSIONS: Forest ecosystem C stock estimates at the end of historical simulation period were at the lower end but within the range of values reported in the literature for northern boreal forests. These estimates may be treated as conservatively low since the area included in the estimates is poorly studied and some of the forests may be on peat deposits rather than mineral soils. Future C stocks were projected to increase in all simulated SSP scenarios, especially in the second half of the twenty-first century. Thus, during the projected period forest ecosystems of the FNO are likely to act as a C sink. In light of growing interest in developing natural resources in the FNO, collecting more data on the status and dynamics of its forests is needed to verify the above-presented estimates and design management activities that would maintain their projected C sink status.

14.
Science ; 370(6522): 1295-1300, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33303610

RESUMEN

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.


Asunto(s)
Ciclo del Carbono , Dióxido de Carbono/metabolismo , Calentamiento Global , Fotosíntesis , Atmósfera/química , Dióxido de Carbono/análisis
16.
Glob Chang Biol ; 26(7): 3920-3929, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32162439

RESUMEN

Large-scale terrestrial carbon (C) estimating studies using methods such as atmospheric inversion, biogeochemical modeling, and field inventories have produced different results. The goal of this study was to integrate fine-scale processes including land use and land cover change into a large-scale ecosystem framework. We analyzed the terrestrial C budget of the conterminous United States from 1971 to 2015 at 1-km resolution using an enhanced dynamic global vegetation model and comprehensive land cover change data. Effects of atmospheric CO2 fertilization, nitrogen deposition, climate, wildland fire, harvest, and land use/land cover change (LUCC) were considered. We estimate annual C losses from cropland harvest, forest clearcut and thinning, fire, and LUCC were 436.8, 117.9, 10.5, and 10.4 TgC/year, respectively. C stored in ecosystems increased from 119,494 to 127,157 TgC between 1971 and 2015, indicating a mean annual net C sink of 170.3 TgC/year. Although ecosystem net primary production increased by approximately 12.3 TgC/year, most of it was offset by increased C loss from harvest and natural disturbance and increased ecosystem respiration related to forest aging. As a result, the strength of the overall ecosystem C sink did not increase over time. Our modeled results indicate the conterminous US C sink was about 30% smaller than previous modeling studies, but converged more closely with inventory data.


Asunto(s)
Carbono , Ecosistema , Carbono/análisis , Secuestro de Carbono , Clima , Cambio Climático , Bosques , Estados Unidos
17.
Nat Commun ; 10(1): 4259, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534135

RESUMEN

Satellite observations show that leaf area index (LAI) has increased globally since 1981, but the impact of this vegetation structural change on the global terrestrial carbon cycle has not been systematically evaluated. Through process-based diagnostic ecosystem modeling, we find that the increase in LAI alone was responsible for 12.4% of the accumulated terrestrial carbon sink (95 ± 5 Pg C) from 1981 to 2016, whereas other drivers of CO2 fertilization, nitrogen deposition, and climate change (temperature, radiation, and precipitation) contributed to 47.0%, 1.1%, and -28.6% of the sink, respectively. The legacy effects of past changes in these drivers prior to 1981 are responsible for the remaining 65.5% of the accumulated sink from 1981 to 2016. These results refine the attribution of the land sink to the various drivers and would help constrain prognostic models that often have large uncertainties in simulating changes in vegetation and their impacts on the global carbon cycle.

18.
Glob Chang Biol ; 25(7): 2499-2514, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30897265

RESUMEN

The terrestrial biosphere plays a critical role in mitigating climate change by absorbing anthropogenic CO2 emissions through photosynthesis. The rate of photosynthesis is determined jointly by environmental variables and the intrinsic photosynthetic capacity of plants (i.e. maximum carboxylation rate; Vcmax25 ). A lack of an effective means to derive spatially and temporally explicit Vcmax25 has long hampered efforts towards estimating global photosynthesis accurately. Recent work suggests that leaf chlorophyll content (Chlleaf ) is strongly related to Vcmax25 , since Chlleaf and Vcmax25 are both correlated with photosynthetic nitrogen content. We used medium resolution satellite images to derive spatially and temporally explicit Chlleaf , which we then used to parameterize Vcmax25 within a terrestrial biosphere model. Modelled photosynthesis estimates were evaluated against measured photosynthesis at 124 eddy covariance sites. The inclusion of Chlleaf in a terrestrial biosphere model improved the spatial and temporal variability of photosynthesis estimates, reducing biases at eddy covariance sites by 8% on average, with the largest improvements occurring for croplands (21% bias reduction) and deciduous forests (15% bias reduction). At the global scale, the inclusion of Chlleaf reduced terrestrial photosynthesis estimates by 9 PgC/year and improved the correlations with a reconstructed solar-induced fluorescence product and a gridded photosynthesis product upscaled from tower measurements. We found positive impacts of Chlleaf on modelled photosynthesis for deciduous forests, croplands, grasslands, savannas and wetlands, but mixed impacts for shrublands and evergreen broadleaf forests and negative impacts for evergreen needleleaf forests and mixed forests. Our results highlight the potential of Chlleaf to reduce the uncertainty of global photosynthesis but identify challenges for incorporating Chlleaf in future terrestrial biosphere models.


Asunto(s)
Clorofila , Fotosíntesis , Bosques , Hojas de la Planta , Estaciones del Año
19.
Remote Sens Environ ; 2322019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33149371

RESUMEN

Photosynthetic capacity is often quantified by the Rubisco-limited photosynthetic capacity (i.e. maximum carboxylation rate, Vcmax). It is a key plant functional trait that is widely used in Earth System Models for simulation of the global carbon and water cycles. Measuring Vcmax is time-consuming and laborious; therefore, the spatiotemporal distribution of Vcmax is still poorly understood due to limited measurements of Vcmax. In this study, we used a data assimilation approach to map the spatial variation of Vcmax for global terrestrial ecosystems from a 11-year-long satellite-observed solar-induced chlorophyll fluorescence (SIF) record. In this SIF-derived Vcmax map, the mean Vcmax value for each plant function type (PFT) is found to be comparable to a widely used N-derived Vcmax dataset by Kattge et al. (2009). The gradient of Vcmax along PFTs is clearly revealed even without land cover information as an input. Large seasonal and spatial variations of Vcmax are found within each PFT, especially for diverse crop rotation systems. The distribution of major crop belts, characterized with high Vcmax values, is highlighted in this Vcmax map. Legume plants are characterized with high Vcmax values. This Vcmax map also clearly illustrates the emerging soybean revolution in South America where Vcmax is the highest among the world. The gradient of Vcmax in Amazon is found to follow the transition of soil types with different soil N and P contents. This study suggests that satellite-observed SIF is powerful in deriving the important plant functional trait, i.e. Vcmax, for global climate change studies.

20.
Artículo en Inglés | MEDLINE | ID: mdl-30297474

RESUMEN

The El Niño-Southern Oscillation exerts a large influence on global climate regimes and on the global carbon cycle. Although El Niño is known to be associated with a reduction of the global total land carbon sink, results based on prognostic models or measurements disagree over the relative contribution of photosynthesis to the reduced sink. Here, we provide an independent remote sensing-based analysis on the impact of the 2015-2016 El Niño on global photosynthesis using six global satellite-based photosynthesis products and a global solar-induced fluorescence (SIF) dataset. An ensemble of satellite-based photosynthesis products showed a negative anomaly of -0.7 ± 1.2 PgC in 2015, but a slight positive anomaly of 0.05 ± 0.89 PgC in 2016, which when combined with observations of the growth rate of atmospheric carbon dioxide concentrations suggests that the reduction of the land residual sink was likely dominated by photosynthesis in 2015 but by respiration in 2016. The six satellite-based products unanimously identified a major photosynthesis reduction of -1.1 ± 0.52 PgC from savannahs in 2015 and 2016, followed by a highly uncertain reduction of -0.22 ± 0.98 PgC from rainforests. Vegetation in the Northern Hemisphere enhanced photosynthesis before and after the peak El Niño, especially in grasslands (0.33 ± 0.13 PgC). The patterns of satellite-based photosynthesis ensemble mean were corroborated by SIF, except in rainforests and South America, where the anomalies of satellite-based photosynthesis products also diverged the most. We found the inter-model variation of photosynthesis estimates was strongly related to the discrepancy between moisture forcings for models. These results highlight the importance of considering multiple photosynthesis proxies when assessing responses to climatic anomalies.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Asunto(s)
El Niño Oscilación del Sur , Fluorescencia , Pradera , Fotosíntesis , Bosque Lluvioso , Tecnología de Sensores Remotos , Luz Solar , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...